Causal Inference in Python Blog

Causal Inference in Python, or Causalinference in short, is a software package that implements various statistical and econometric methods used in the field variously known as Causal Inference, Program Evaluation, or Treatment Effect Analysis.

Through a series of blog posts on this page, I will illustrate the use of Causalinference, as well as provide high-level summaries of the underlying econometric theory with the non-specialist audience in mind. Source code for the package can be found at its GitHub page, and detailed documentation is available at causalinferenceinpython.org.

Stratification

Unconfoundedness implies that matching on propensity scores also provides a valid way of constructing treatment effect estimators. In this post we look at a few ways of stratifying the sample into blocks that contain units with similar propensity scores...

Read More

Trimming

When there is indication of covariate imbalance, we may wish to construct a sample where the treatment and control groups are more similar than the original full sample. One way of doing so is by dropping units with extreme values of propensity scores...

Read More

Balance

Continuing with the simulated data set from the previous post, in this post we will look at some basic summary statistics, as well as assess the degree of covariate balance between the treatment and control groups...

Read More